Question Paper Code: 3126

B.A. (Part-III) Examination, 2017

STATISTICS

[First Paper]

(Non-parametric Inference and Regression Analysis)

Time: Three Hours] [Maximum Marks: 35

Note: Answer five questions in all. Question No.1 is compulsory. Rest attempt one question from each unit.

कुल पाँच प्रश्नों के उत्तर दीजिए। प्रश्न संo 1 अनिवार्य है। इसके अतिरिक्त प्रत्येक इकाई से एक प्रश्न कीजिए।

- (a) How will you test randomness in non-parametric methods?
 अप्राचलीय विधि में यादृच्छिकता का परीक्षण कैसे करेंगे?
 - (b) Explain the main difference between parametric and non-parametric approach in the theory of statistical inference.

सांख्यिकी अनुमति के सिद्धान्त में प्राचल और गैर-प्राचल तकनीक में मुख्य अन्तरों को स्पष्ट कीजिए।

S-481/100

(1)

[P.T.O.]

- (c) How will you test whether two samples are coming from identical populations?

 दो प्रतिदर्श एकरूपीय समध्यों से आ रहे हैं, इसका परीक्षण कैसे करेंगे ?
- (d) Explain the concept of regression. समाश्रयण की संकल्पना समझाइये।
- (e) What is meant by order statistics? Derive the probability density function of rth order statistics for a random sample of size n from a distribution of discrete type.

क्रमित सांख्यिकी से आप क्या समझते हैं ? असतत प्रकार के बंटन से प्राप्त n आकार के यादृच्छिक प्रतिदर्श के लिए त्वें क्रमित सांख्यिकी का प्रायिकता घनत्व फलन ज्ञात कीजिए।

(f) Given a random sample of size n from $N_p(\overset{\mu}{\sim}, \Sigma)$. Write down the unbiased estimator of $\overset{\mu}{\sim}$ and Σ .

एक $N_p(\begin{subarray}{c} μ, Σ). समष्टि से n आकार के प्रतिदर्श दिए होने पर प्राचलों <math>\mu$ और Σ के अनभिनत आकलक लिखिए।

S-481/100 (2)

- (g) Define a multivariate probability density function and state its properties.
 एक बहुचर घनत्व फलन की परिभाषा दीजिए तथा इसके गुणों को बताइये।
- (h) If a p-dimensional random vector $\overset{X}{\sim}$ has p. d. f. $\overset{f_{X}}{\sim} (\overset{x}{\sim}) = k \, e^{-\frac{1}{2}} (\overset{x-b}{\sim})^{1} \, \Sigma^{-1} (\overset{x-b}{\sim}) \text{ then, what }$ will be the value of constant k?

यदि एक p- विमीय चर X का प्रायिकता घनत्व फलन $\int_{X} (x) = k e^{-\frac{1}{2}} (x-b)^{1} \Sigma^{-1} (x-b)$ तब, अचर k का मान क्या होगा ?

- Write down the assumptions usually made in general linear model.
 सामान्य रैखीय माडल में सामान्यता प्रयुक्त होने वाली कल्पनाओं को लिखिए।
- j) Explain best linear unbiased estimator with example. अच्छा रैखिक अनिभनत आकलक को उदाहरण सहित समझाइये।

S-481/100

(3)

[P.T.O.]

UNIT-I / इकाई-I

- (a) Define multivariate normal distribution and obtain its moment generating function.
 - बहुचर प्रसामान्य बंटन की परिभाषा दीजिए तथा इसका आघूर्ण जनित फलन निकालिए।
 - (b) Show that in multivariate normal distribution any linear function of the variates is normally distributed.
 - दिखाइये कि बहुचर प्रसामान्य बंटन में चरों के सरल रेखीय फलन का बंटन भी प्रसामान्य होता है।
- 3. Let $\frac{x}{p \times 1}$ be distributed as multivariate normal. Obtain the conditional distribution of the subvector $\frac{x}{q} (1)_{q \times 1}$, q<p, when the other subvector $\frac{x}{q} (2) (p-q \times 1)$ is held fixed.

माना कि x_{px1} का बहुचर प्रासामान्य बंटन है। उपसिदेश $x^{(1)}_{qx1}$, q<p, का बंटन निकालिए जबिक दूसरा उपसिदेश $x^{(2)}$ $(p-q\times 1)$ स्थिरांक माना गया हो।

UNIT-II / इकाई-II

- 4. Let $f(x, \theta) = \frac{1}{\theta}$; $0 < x < \theta$ and x_1, x_2, x_3 be a random sample of size 3 from this p.d.f. Let z_1, z_2, z_3 be the order statistics of this sample. Find the p.d.f. of z_1 and z_3 and hence obtain $P[z_2 \ge \theta/3]$.
 - यदि $f(x,\theta)=\frac{1}{\theta}$; $0< x< \theta$ और x_1,x_2,x_3 इस प्रायिकता घनत्व फलन से लिया गया 3 आकार वाला यादृच्छिक प्रतिदर्श है। माना कि z_1,z_2,z_3 इस प्रतिदर्श की क्रमित सांख्यिकी है तो z_1 तथा z_3 का प्रायिकता घनत्व फलन ज्ञात कीजिए तथा $P[z_2 \geq \theta/3]$. का मान निकालिये।
- Find the smallest value of n for which P[Y₁< ξ 0.5<Yn] ≥ 0.99, where Y₁<Y₂<....<Yn are the order statistics of a random sample of size n from a distribution of continuous type and ξ p is a quantile of order p.

n का न्यूनतम मान ज्ञात कीजिए जिसके लिए $P[Y_1 < \xi_{0.5} < Yn]$ ≥ 0.99 , जबिक $Y_1 < Y_2 < < Yn$, n आकार के प्रतिदर्श के क्रिमित प्रतिदर्शन है तथा ξ_p क्रम p का विभाजन है।

UNIT-III / इकाई-III

- Discuss Wilcoxon's signed rank test.
 Wilcoxon के signed rank परीक्षण की व्याख्या कीजिए।
- 7. Describe the non-parametric test for goodness of fit and compare it with the χ^2 -test.

आसंजन सौष्ठव परीक्षण के लिए अप्राचल परीक्षण समझाइये और इसकी तुलना χ^2 -परीक्षण से कीजिए।

UNIT-IV / इकाई-IV

8. If $Y = \times \beta + \varepsilon$ is general linear model of full rank and if ε is distributed as the p-variate normal with mean Q and covariance $\sigma^2 I$, then prove that $\hat{\beta} = (x^1 x)^{-1} x^1 Y$, is an unbiased estimator of β with $\cos(\hat{\beta}) = \sigma^2 (x^1 x)^{-1}$ यदि $Y = \times \beta + \varepsilon$ एक full rank का सामान्य रैखीय मॉडल है और ε का बंटन एक p- चरीय प्रसामान्य बंटन है जिसका

माध्य O और सहप्रसरण मैट्रिक्स σ^2 I, है, तो सिद्ध कीजिए

कि $\beta = (x^1x)^{-1} x^1 Y$, β का एक अभिनत आकलक है और

9. Present a brief account of tests of hypothesis concerning β in model Y = X $\beta + \varepsilon$ under the normality assumptions.

माडल $Y = X \stackrel{\beta}{-} + \stackrel{\mathcal{E}}{-}$ में $\stackrel{\beta}{-}$ से सम्बन्धित कल्पनाओं के परीक्षण संक्षिप्त में बताइये जबिक प्रसामान्यता का प्रतिबन्ध मान लिया गया हो।

---- X -----

 $cov(\beta)$ का मान $\sigma^2(x^1x)^{-1}$ है।