Question Paper Code : 5637

M.A. / M.Sc. (Semester - II) Examination, 2018

MATHEMATICS

[Second Paper]
(Module Theory)
Time : Three Hours]
[Maximum Marks:70
Note: Answer five questions in all. Question No. 1 is compulsory. Besides this, attempt one question from each Unit.

1. Attempt all parts : $[3 \times 10=30]$
(a) If X is a submodule of M, then show that $A n n(X)$ is an ideal of R
(b) Define a free module and show that Z- module Q is not free.
(c) Define divisible group with an example
(d) If L is a submodule of M , then show that $0 \rightarrow \mathrm{~L}$ $\rightarrow M \rightarrow M / L \rightarrow 0$ is a short exact sequence.
(e) Let $f: R \rightarrow S$ be a ring homomorphism. If M is S module then show that M is also an R - Module.
(f) If G is a finite abelian group of order $\mathrm{n} \geq 2$, then show that G is not a free Z -module.
(g) Show that every homomorphic image of a divisible group is also a divisible group.
(h) If M be an R -module then prove that there exist a free R-module F and a submodule K of F such that $\mathrm{F} / \mathrm{K} \approx \mathrm{M}$
(i) Define a split exact sequence. Give an example of a short exact sequence which is not split exact.
(j) Define an injective module and give an example.

UNIT-I

2. (a) If M be a non-empty and simple R-module then show that $\operatorname{End}_{R}(M)$ is a division ring.
(b) If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an R -module homomorphism, then show that : $M / \operatorname{Ker} f \approx \operatorname{Imf}$.
3. (a) Prove that a non-zero simple R-module is always cyclic. Is the converse true? Justify your answer with some suitable example.
(b) Let $M_{1}, M_{2}, M_{3} \ldots .$. Mn be an R-modules. Prove that M is the direct sum of $M_{1}, M_{2}, M_{3} \ldots$. Mn if and only if for each I in $\{1,2,3, \ldots . n\}$, there exist an R module hompmorphism sp1: $\mathrm{M} \rightarrow \mathrm{M}_{t}$ and $\mathrm{u}_{t}: \mathrm{M}_{t}$ $\rightarrow \mathrm{M}$ such that
(i) $\mathrm{p}_{l} \mathrm{u}_{l}=1_{\mathrm{M} l}$
(ii) $\mathrm{p}_{\mathrm{k}} \mathrm{u}_{1}=0$ for $\mathrm{k} \neq 1$
(ii) $\quad \sum \mathrm{u}_{l} \mathrm{p}_{l}=1_{\mathrm{m}}$

UNIT-I

4. (a) Let $0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0$ be short exact sequence of R-modules. Prove that there exist an R-mnodule homomorphism $k: M_{2} \rightarrow M$ such that $\mathrm{gk}=\mathrm{I}_{\mathrm{M} 2}$. If and only if M is the direct sum of M_{1} and M_{2}
(b) Show that every module over a division ring is always free.
5. (a) If M be a free R-module with basis B and N be an R-module and $f: B \rightarrow N$ is a mapping then show that there exist a unique R -module homomorphism $\mu \mathrm{M} \rightarrow \mathrm{N}$ such that $\mu / \mathrm{B}=\mathrm{f}$. [5]
(b) If F be a free R -module then prove that every short exact sequence of R -modules $0 \rightarrow \mathrm{~N} \rightarrow \mathrm{M} \rightarrow$ $\mathrm{F} \rightarrow 0$ is split exact sequence.

UNIT-III

6. (a) If M be a module over a division ring D then prove that any two bases of M have the same cardinality.
[5]
(b) Prove that every finitely generated torsion free module over a P.I.D. is free.
7. (a) If M is finitely generated torsion free module over a P.I.D. then show that :
$M \approx T(M)+M / T(M)$
(b) Let R be a P.I.D. and M be a free module with basis $B=\{x i / i \in l\}$; then show that :
(i) $x=\sum r_{i} x_{i} \in M \backslash\{0\}$ is primitive if and only if $\operatorname{gcd}\left(r_{i} \backslash i \in I\right)=1$
(ii) If $y=\sum s_{i} x_{i} \in M \backslash\{0\}$ and $\mathrm{d}=\mathrm{gcd}$ ($s_{i} \backslash i \in I$); then $\mathrm{y}=\mathrm{dy}^{1}$ and y^{\prime} is primitive element of M.

UNIT-IV

8. (a) Define a projective module and show that every free module is projective module. Is the converse true?
(b) Let Pi be a family of R-modules and let $P=\prod P_{i}$ show that : P is projective module if and only if each P_{i} is projective module; for all i.
9. (a) Show that the following statements are equivalent
(i) P is Projective R -module
(ii) if $0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} P \rightarrow 0$ be a short exact sequence, then it splits.
(iii) There exist an R-module K such that $\overline{P \oplus K}$ is free. (Where $\overline{P \oplus K}$ stands for direct sum of P and K)
(b) Prove that an abelian group is divisible if and only if it is an injective Z-module.
