Question Paper Code: 5637

M.A./M.Sc. (Semester - II) Examination, 2018

MATHEMATICS

[Second Paper]

(Module Theory)

Time: Three Hours [Maximum Marks:70

Note: Answer **five** questions in all. Question **No.1** is **compulsory**. Besides this, attempt **one** question from each Unit.

- 1. Attempt all parts: [3x10=30]
 - (a) If X is a submodule of M, then show that Ann(X) is an ideal of R
 - (b) Define a free module and show that Z- module Q is not free.
 - (c) Define divisible group with an example
 - (d) If L is a submodule of M, then show that $0 \to L$ $\to M \to M/L \to 0$ is a short exact sequence.

5637/300 (1) [P.T.O.]

- (e) Let $f: R \to S$ be a ring homomorphism. If M is S-module then show that M is also an R Module.
- (f) If G is a finite abelian group of order $n \ge 2$, then show that G is not a free Z-module.
- (g) Show that every homomorphic image of a divisible group is also a divisible group.
- (h) If M be an R-module then prove that there exist a free R-module F and a submodule K of F such that $F/K \approx M$
- (i) Define a split exact sequence. Give an example of a short exact sequence which is not split exact.
- (j) Define an injective module and give an example.

UNIT-I

- 2. (a) If M be a non-empty and simple R-module then show that End_R(M) is a division ring. [5]
 - (b) If $f:M \rightarrow N$ be an R-module homomorphism, then show that : M/Ker $f \approx Imf$. [5]
- (a) Prove that a non-zero simple R-module is always cyclic. Is the converse true? Justify your answer with some suitable example. [5]

5637/300 (2)

(b)	Let M ₁ , M ₂ , M ₃ Mn be an R-modules. Prove
	that M is the direct sum of M_1 , M_2 , M_3 Mn if and
	only if for each I in { 1,2,3,n}, there exist an R-
	module hompmorphism sp1 : $M \rightarrow M_i$ and u_i : M
	→M such that [5]

- (i) $p_{i}u_{i} = 1_{m_{i}}$
- (ii) $p_k u_l = 0 \text{ for } k \neq 1$
- (ii) $\sum u_i p_i = 1_M$

UNIT-II

- 4. (a) Let $0 \rightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \rightarrow 0$ be short exact sequence of R-modules. Prove that there exist an R-mnodule homomorphism k: $M_2 \rightarrow M$ such that gk = I_{M2} . If and only if M is the direct sum of M_1 and M_2 [5]
 - (b) Show that every module over a division ring is always free. [5]
- 5. (a) If M be a free R-module with basis B and N be an R-module and f:B \rightarrow N is a mapping then show that there exist a unique R-module homomorphism μ M \rightarrow N such that μ /_R = f. [5]

5637/300 (3)

(b) If F be a free R-module then prove that every short exact sequence of R-modules $0 \to N \to M \to F \to 0$ is split exact sequence. [5]

UNIT-III

- 6. (a) If M be a module over a division ring D then prove that any two bases of M have the same cardinality.

 [5]
 - (b) Prove that every finitely generated torsion free module over a P.I.D. is free. [5]
- 7. (a) If M is finitely generated torsion free module over a P.I.D. then show that : $M \approx T(M) + M/T(M)$ [5]
 - (b) Let R be a P.I.D. and M be a free module with basis B = $\{xi / i \in I\}$; then show that : [5]
 - (i) $x = \sum r_i x_i \in M \setminus \{0\} \text{ is primitive if and only}$ if $\gcd(r_i \setminus i \in I) = I$
 - (ii) If $y = \sum s_i x_i \in M \setminus \{0\}$ and $d = \gcd(s_i \setminus i \in I)$; then $y = dy^1$ and y' is primitive element of M.

UNIT-IV

- 8. (a) Define a projective module and show that every free module is projective module. Is the converse true? [5]
 - (b) Let Pi be a family of R-modules and let $P = \prod P_i$ show that : P is projective module if and only if each P_i is projective module; for all i. [5]
- 9. (a) Show that the following statements are equivalent [5]
 - (i) P is Projective R-module
 - (ii) if $0 \rightarrow M_1 \xrightarrow{f} M \xrightarrow{g} P \rightarrow 0$ be a short exact sequence, then it splits.
 - (iii) There exist an R-module K such that $\overline{P \oplus K}$ is free. (Where $\overline{P \oplus K}$ stands for direct sum of P and K)
 - (b) Prove that an abelian group is divisible if and only if it is an injective Z-module. [5]

----X-----

5637/300 (4)

5637/300 (5)